DINOSAUR FOOTPRINTS

DINOSAUR BODY SIZE

1. Use a measuring tape, chalk and the information below to draw out your dinosaur footprints in the playground. Tip measure the footprint length first and then draw your footprint shape. If students are working in groups, each group could choose a different footprint.

Dinosaur	Footprint shape	Footprint length - from back of foot to tip of longest toe (cm)	Stride length (cm)
Allosaurus	年	85	340
Triceratops		90	360
Compsognathus		7.5	90
Brachiosaurus		260	1040

DINOSAUR FOOTPRINTS

2. Use your measuring tape to measure the dinosaur's stride length. Use chalk to mark where the second dinosaur footprint would go.

Footprint 2
Footprint

Stride length

Footprint 1
3. Using the calculations on page 1 work out the leg lengths and body lengths of each dinosaur. If you have space use a measuring tape and chalk to measure out the dinosaur body lengths in the playground (some of them will be very long!).

Dinosaur	Footprint length (cm)	Leg length (cm)	Body length (cm)
Allosaurus	85		
Triceratops	90		
Compsognathus	7.5		
Brachiosaurus	260		

DINOSAUR SPEED

We can now work out the relative speed of the dinosaur - whether it was walking, trotting or running, by looking at its leg length and stride length.

Stride length \div leg length	Dinosaur speed
<2	walking
$2-2.9$	trotting
>2.9	running

Work out the relative speeds of the different dinosaurs and fill in the table below.

Dinosaur	Stride length (cm)	Leg length (cm)	Stride length \div leg length	Relative speed (walking, trotting or running)
Allosaurus				
Triceratops				
Compsognathus				
Brachiosaurus				

